

RoboChemTaxy: A Taxonomy of Robotic **Manipulation for Chemistry Lab Automation**

Kefeng Huang^{1,2}, Jonathan Pipe^{1,2}, Alice E. Martin³, Tianyuan Wang^{1,2}, Barnabas A. Franklin³, Andy M. Tyrrell^{1,2}, Ian J. S. FairLamb³, Jihong Zhu^{1,2}

¹School of Physics, Engineering and Technology, University of York ²Institute for Safe Autonomy, University of York ³Department of Chemistry, University of York

Motivation

- Chemistry automation has long been a goal for increasing experimental throughput, safety, and reproducibility. Traditional systems, however, are often highly task-specific—relying on custom hardware and fixed workflows, making them difficult to generalize across experiments or labs.
- Recently, robotic arms have emerged as a flexible alternative, capable of mimicking human manipulation and adapting to a wide range of chemical tasks. Yet most researches still focus on isolated case studies or specific pipelines, lacking a systematic analysis of how these systems are structured.
- This taxonomy addresses that gap by categorizing and analyzing robotic **chemists manipulations**, aiming to guide future development with clearer design principles and shared vocabulary.
- Furthermore, it aligns with the emerging Model Context Protocol (MCP) paradigm, enabling a unified interface from large language model (LLM) planning to low-level robot execution. This bridges symbolic reasoning and physical action in a modular and reusable way.

Positioning

Coupling

resistance or

deformation.

Joining or separating

force to overcome

objects using controlled

Precise placement of objects by overcoming minor resistance to reach a desired pose.

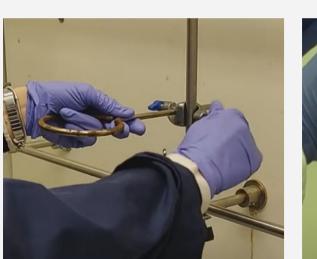
Insertive Positioning

Static Positioning
Place without reorienting

Fit into constraint

Rotational Positioning Adjust orientation

Forced Coupling Linear push/pull


Penetrative Coupling Force to pierce a barrier

Rotational Coupling Rotate with torque

Elastic Coupling Temporarily deform material

Apply pressure to dispense

Taxonomy

core experimental skills taught to undergraduate chemistry major, 78 videos from "Chemistry Teaching Labs – University of York" YouTube channel

Force Sensitivity

Required precision in applied force

Control Directness

Direct or mediated object interaction

: twisting **X**: pouring

Motion Pattern

Single or repetitive movement

: dipping **X**: stirring

Three key dimensions derived from videos capture **essential patterns** for robotic manipulation in chemistry. We then define four manipulation categories, each with distinct variations with details shown in diagram on the right.

This taxonomy supports benchmarking, skill decomposition, and serves as a foundation for **learning from demonstration** (LfD) pipelines. This taxonomy highlights fundamental manipulation challenges currently underexplored in robotics. By formalizing these patterns, we aim to guide future research toward more generalizable and capable robotic chemists.

Tooling

Agitating

materials.

Repetitive or periodic

clean, or interact with

motion used to mix,

Indirect manipulation of materials using tools or mediated forces such as gravity or pressure.

Pouring

Squirting

Tilt to guide liquid flow

Dropping Fall into place by gravity

Scooping

Gather powders with a tool

Dipping

Submerge in liquid to collect

Swirling

Gentle circular motion

Shaking Vigorous motion to mix

Twisting

Axial rotation to spread

Stirring

Use of a tool to blend

Wiping Dragging tool across surface

Natural Language Control

Natural Language

LLMs

Taks Planning Functional Calls

- The **Model Context Protocol (MCP)** provides a standardized interface between LLMs and external tools, enabling seamless communication between high-level task planners and low-level robots control. MCP is **model-agnostic** — supporting

integration with different or customized domain specific LLMs. - Built on our taxonomy, manipulation steps can be composed into modular macros, which act as reusable tools provided by the **MCP server.** LLMs can orchestrate complex experimental procedures by invoking these macros through function-calling.

- Laboratories can easily **customize or extend** these macros to fit their specific workflows. New skills can even be taught through one-shot demonstrations, eliminating the need for manual programming and improving adaptability across labs.

MCP Server

XSetting up Separating funnel

Static Positioning Clamp

Twisting Clasp Screw

Insertive Positioning

Separating Funnel

Pouring X ml Liquid

Static Positioning Cylinder

Pouring

Flask containing liquid

Pouring

Cylinder with liquid

Quantity User Defining / One-shot Learning -> Macros

Acknowledgements This work was supported by the Centre for Doctoral Training in Autonomous Robotic Systems for Laboratory Experiments (ALBERT CDT), which provides training and research support in the field of laboratory robotics.